Читать книгу Математика, философия и йога онлайн
Именно об этом я говорил вчера вечером. Я не упоминал о материи, когда рассказывал о пространстве ниже начерченной линии, когда отождествлял ее с дискретным сознанием, то есть с многообразием отдельных элементов, каждый из которых связан с соседними, как обычные целые числа. Затем я воспользовался идеей непрерывного пространства, чтобы описать то, что находится выше этой черты, за пределами двойственного сознания. При этом я построил лишь приближение к истине, поскольку в конечном счете это непрерывное пространство также дискретно, оно тоже отмечено ограниченностью нашего процесса познания.
Элементы-песчинки должны быть достаточно небольшими. Вообще говоря, они становятся невероятно крошечными – такими, что их можно назвать «бесконечно малыми». Эту мысль оставил нам Лейбниц, и она стала основой дифференциального исчисления – во всяком случае, в мое время. Мы сталкиваемся с понятием бесконечно малых – в буквальном смысле слова бесконечно малых элементов, совокупность которых образует непрерывное пространство. Однако, поскольку это все-таки отдельные песчинки, такое пространство уже не является чистым потоком.
Математики так и не смирились с мыслью о существовании чего-то бесконечно малого, ускользающего от любых измерений; эта идея никогда их не удовлетворяла. Говорят, что Вейерштрасс[32] полностью отказался от бесконечно малых. Он считается одним из величайших мыслителей в математическом анализе; этот человек интересен уже тем, что писал как поэт. Ему приписывают такие слова: «Математик, в котором нет ни капли поэта, – не настоящий математик». Возможно, эта фраза поможет вам получить определенное представление об этом человеке. Он, так сказать, избавился от бесконечно малых, но дорогой ценой. Расплатой стал отказ от существования такого явления, как движение; он пришел к тому, что есть только тела, неподвижно покоящиеся в определенных точках пространства в каждый отдельный момент времени. Такое представление работает. Опираясь на него, можно построить дифференциальное исчисление. Лично я не знаком с его выкладками. В мое время они не входили в курс дифференциального исчисления. Наука пошла по пути Лейбница, и теперь вы имеете полное право считать бесконечно малые элементы чем-то совершенно реальным.