Читать книгу Математика, философия и йога онлайн

Избавиться от бесконечно малых можно, но при этом придется отбросить представление о существовании самого движения: останутся только тела, занимающие в различные мгновения определенные положения в пространстве. Интуиция заставляет задать вопрос: «Каким образом можно оказаться в ином положении, не перемещаясь в него?» Выяснилось, что такое интуитивное недоумение не так уж обоснованно. Достаточно предположить, что то явление, которое называют движением, сводится к неподвижному положению материи (или тела) в разных точках пространства в определенные моменты времени. Это можно назвать кинематографическим подходом к действительности, в рамках которого идея движения превращается просто в иллюзию, майю. Я не отстаиваю эту точку зрения, я просто описываю ее. Сейчас я занимаю некую промежуточную позицию. Нам известно, что последовательность неподвижных картинок способна вызвать иллюзию движения. Мы сталкиваемся с этим всякий раз, когда приходим в кинотеатр. Каждый образ, возникающий на экране, совершенно статичен, просто кадры сменяются очень быстро, и в результате возникает впечатление потока, движения, хотя на самом деле никакого движения нет.

Был один греческий философ по имени Парменид[33], и он уже в давние времена утверждал, что движения не существует. Его противником был Гераклит[34] – тот самый, который сказал, что в мире царит такое движение, что в одну реку нельзя войти дважды – впрочем, это невозможно сделать даже один раз. Зенон[35], ученик Парменида, развил его лучшие парадоксы с единственной целью: продемонстрировать, что, допуская существование движения, можно оказаться в очень сложном положении. Он описал знаменитый парадокс состязания Ахилла и черепахи в беге, где животное получает определенную фору в расстоянии (см. рис. 7).


Рис. 7


Зенон утверждает, что Ахилл никогда не догонит ее, как бы он быстро ни бежал и как бы медленно ни ползла черепаха. Предположим, Ахилл начинает бег с точки А, а черепаха – с точки В. Чтобы догнать ее, Ахиллу необходимо достичь точки В, но тем временем черепаха уже доползет до точки С. Это значит, что теперь Ахиллу придется добежать до точки С, но к этому времени черепаха уже окажется в точке D. Это будет продолжаться бесконечно, а Ахиллу потребуется бессчетное число шагов. Совершить бесконечное количество движений за конечное время невозможно. Таким образом, движения нет.